
Introduction

When two or more individual materials combine to

form a new material with improved characteristics, a

composite is created. In a simplistic model neglecting

minor components like additives, a thermoplastic

composite can be considered as a two-component sys-

tem, that is consisted of the continuous phase of poly-

mer, such as polypropylene (PP), and the dispersed

phase of filler, like agricultural crop by-products in-

cluding wheat straw, soy hull, soy stems and more.

The use of agricultural fillers (AgFillers) in PP can

lead to desirable cost reduction and improvements in

selected properties, although other properties may be

compromised. The changes in these properties can be

controlled by manipulating aspects like filler or poly-

mer type, as well as blend ratios. By systematic exper-

imentation and the aid of models, optimization is

made possible to achieve a delicate balance of maxi-

mizing desired property enhancements while mini-

mizing any sacrifice in other properties. Artificial

neural network (ANN) models are a novel tool that is

capable of such tasks, and enables more efficient

product design processes compared to conventional

regression models.

The objective of this paper is to investigate the

effects on the properties of composite materials, when

their constituent AgFiller and PP types and usage lev-

els are varied. Experimental data were collected and

implemented into ANN designs to allow prediction

and in turns for the optimization of these properties by

manipulating formulation parameters.

AgFiller-PP composites

The use of fillers in polymer systems has been prac-

ticed for over a century [1]. Up until the mid-1990s,

the research and use of lignocellulosic material as

filler mostly focused on wood fibers [2]. In recent

years, agricultural by-products have received in-

creased attention as alternative fillers due to their low

cost and abundance. AgFillers can be used in both

thermoplastic [3, 4] and thermoset [5, 6] polymer ma-

trices, and the choice of polymer for making compos-

ites greatly depends on the intended application of the

material. Meanwhile, the selection of AgFiller varies

mainly according to local crop availability. Some re-

searchers, such as Jacob et al. [6] and Panthapulakkal

and Sain [7], utilized AgFillers in the form of fibrous

reinforcements. Although the presence of the fibers

provided improved mechanical properties of the com-

posite [6], the steps required to prepare the fibers can

be complex and costly, often involving both mechani-

cal and chemical treatment [7]. A more economical

approach is to incorporate AgFillers into composites

in the form of particulate fillers, similar to a flour, to

replace the use of traditional mineral fillers such as
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calcium carbonate, mica and talc. The outcome of this

practice is a composite with increased tensile and

flexural moduli but little improvement on the strength

of the composite [8].

PP is known as a commodity thermoplastic by its

versatility in many applications. Its large annual pro-

duction quantity contributes to its low cost, and dis-

carded PP can be recycled and reused by melting and

forming the material into new products. As a

semi-crystalline material, the crystalline structures in

PP give order on the molecular level and are a source

of the polymer’s strength, and therefore high percent-

age of crystallinity is desired [9]. Crystallinity can be

manipulated by adding fillers that serve as nucleating

agents, as shown in the study by Albano et al. [10],

where it was demonstrated that composites containing

inorganic particulate fillers showed increases in crys-

tallization temperature as well as the percentage of

crystallinity when compared to pure PP. The most

commonly used method for studying melting and

crystallization is by differential scanning calorime-

try (DSC), where heat flow is measured over a range

of temperatures and any phase change is recorded.

Artificial neural networks

Artificial neural networks (ANNs) are a more recent

technique to model complex relationships. ANNs al-

low the interpretation of relationships among vari-

ables of high-dimensional space [11], thus demon-

strating advantage over conventional modeling

methods. The use of ANNs in areas of material sci-

ence and pharmaceutical engineering has increased

significantly in recent years, as exemplified in the

study of reinforced aluminum matrix composites by

Altinkok [12], and the research by Leane et al. [13] on

the in vitro dissolution of sustained release mini-

tablets. An ANN model consists of an input layer, an

output layer, and a number of hidden layers. These

layers are arranged in parallel, and in each layer pro-

cessing elements called neurons are placed [14].

Figure 1 illustrates the basic construction of an ANN

model with one hidden layer.

With the number of neurons in the input and out-

put layers fixed by the number of variables, the num-

ber of hidden layers as well as the number of neurons

in the hidden layer can be varied to construct the most

appropriate model. The universal approximation the-

ory suggests that a network with only one hidden

layer but a large number of neurons can be used to re-

late any input to any output [15]. However, too many

neurons could over interpret patterns and could result

in memorization, prohibiting the network’s ability to

generalize [13]. On the other hand, too few neurons in

the network could deter the model’s ability to classify

patterns in the data. To transform inputs into outputs

through the hidden layers, various transfer functions

can be employed. Examples of these functions in-

clude the hard limit, log sigmoid, liner, radial basis

and hyperbolic tangent sigmoid transfer functions.

Data weighting and normalization are regularly em-

ployed to avoid overflows, as outlined by

Elkamel et al. [14] in their modeling of ozone levels

as a function of the concentrations and types of chem-

icals present in the atmosphere. A number of com-

puter software packages, such as Matlab and

GraphPad Prism, are available to efficiently perform

ANN construction, training and execution.

Experimental

Materials

Wheat straw (WS), soybean hulls (SH), ground soy-

bean hulls (gSH) and soy stems (SS), were used as

AgFillers in this study. A high viscosity PP impact

copolymer (SG 0.9; MFI 1.5, 230°C, 2.16 kg), and a

random sample of post-consumer PP recyclate (rPP),

containing mostly food containers, collected from the

Region of Peel Material Sorting Facility, Ontario,

were used as the polymer matrix.

Methods

AgFiller-PP composites of various blend recipes were

compounded and pelletized using a Haake Minilab

micro compounder. Examples of blend recipes in-

clude 100 mass% polymer, 80 mass% polymer with

20 mass% AgFiller and 60 mass% polymer with
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Fig. 1 Architecture of a one hidden layer feed-forward neural

network [14]



40 mass% AgFiller. Furthermore, the composition of

the polymer phase in each recipe was varied by

changing the ratio of vPP and rPP. DSC was used to

study melting and crystallization of selected samples,

using a TA Instruments Q10 model apparatus. Ap-

proximately 10 mg of sample was cut from a larger

pellet or strand at a random location. The sample was

then placed in a hermetic aluminum pan, crimp-sealed

and loaded into the DSC chamber purged with nitro-

gen. The test was programmed with three steps. First,

a heating step from ambient (23°C) to 210°C at

10°C min
–1

removed any thermal history of the com-

posite. The sample was then held isothermally at

210°C for 5 min. The second step involved cooling

the sample from 210 to 30°C at 10°C min
–1

. After the

second step the sample was again held isothermally at

30°C for 5 min. The final heating step from 30 to

210°C, at 10°C min
–1

, would again melt the material.

Crystallization and melting information are gathered

from data produced in steps 2 and 3.

Crystallinity was calculated from melting peak

areas. The percentage of crystallinity (Xc) in a com-

posite material is determined by:

X

H

H w

c
�

�

�

0

100
(1)

where �H is the heat of fusion of the PP composite,

�H0 is the heat of fusion of 100% crystalline PP, and

w is the polymer mass fraction in the composite [3].

According to references [16, 17], �H0 of 209 J g
–1

was

used for calculation.

Results and discussion

Figures 2 and 3 illustrate the DSC endotherms of

AgFiller-vPP composites during cooling step 2 and

melting step 3, respectively. A shift in crystallization

temperature was detected in Fig. 2 for all AgFiller-PP

composites when compared to that of pure PP. Specif-

ically, crystallization of the composites occurred at

higher temperatures. The reason for the change in

crystallization temperature could be that the AgFiller

served as nucleating agents to promote formation of

spherulite crystals, similar to the way mineral fillers

increases Tc of talc-PP composites [10]. From Fig. 3,

it could be seen that the melting point experienced lit-

tle changes, regardless of AgFiller type used.

DSC endotherms of rPP (Fig. 4) showed distinct

bimodal crystallization behaviour. In the study of

die-drawn polypropylene by Taraiya et al. [18], it was

suggested that the presence of a second crystallization

peak was likely due to the presence of copolymers.

Since copolymers are common in injection molding

applications to provide additional impact resistance,

this explanation is plausible, considering the source

of the rPP tested was mainly injection molded food

containers. The bimodal crystallization peaks were

eliminated by the addition of AgFiller. Furthermore,

as the ratio of rPP in the composite increased, the
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Fig. 2 DSC curves during cooling step for AgFiller-PP com-

posites and pure vPP

Fig. 3 DSC curves during second heating step for AgFiller-PP

composites and pure vPP

Fig. 4 DSC endotherms during cooling step of experiment, for

gWS-PP composite with increasing rPP content



peak crystallization temperature of the composite also

increased.

The levels of crystallinity of AgFiller-PP com-

posites are shown in Fig. 5. It was determined that Xc

of AgFiller-PP composites were not greatly affected

by the amount of rPP in the composition. Instead,

changes in Xc were mostly caused by changes in

AgFiller type. All composites containing rPP, showed

crystallinity similar to or lower than that of pure rPP,

based on a typical range of �3–5% of statistical sig-

nificant difference among crystallinity values. Except

in the case of two data points, the range for Xc of

AgFiller-PP composites were bound by the Xc of vPP

and rPP.

ANN modelling

An executable program was compiled using

Matlab 7.0, consisting of three sections. The first sec-

tion designs and trains the model, the second calcu-

lates results using the trained model, and the third

tests the model with a separate data set. The training

data set was consisted of 75% of the experimental

data, randomly selected, while the remaining 25%

composed the test data. The input neurons were made

up of the four input variables: AgFiller type, AgFiller

percentage, vPP percentage and rPP percentage. Two

hidden layers of neurons were used, and training was

performed using log sigmoid-linear (LS-PL) transfer

functions. The number of neurons and the number of

iterations for training were varied for each property

studied. A separate model was constructed for each of

the three thermal properties, namely Tm, Tc and

% crystallinity.

On first attempts, 15 neurons were used in each

hidden layer to construct the ANN models. However,

the results showed overmapping of the training data,

such that the model was too rigid to generalize for the

test data. The number of input neurons were subse-

quently lowered, and it was determined that 4 to

6 neurons were sufficient to give accurate predictions.

ANN model designs, as well as the prediction accu-

racy using the ‘training’ data set, for each thermal

property are summarized in Table 1. A second data set

was used to test the prepared models and the results

proved to be satisfactory. The average error on crys-

talline temperature, and melting temperature was al-

ways less than 1.3 and 0.25, respectively. The average

error on % crystallinity was always less than 9%. Al-

though this is higher than that of the previous two

variables but is nevertheless an acceptable upper

bound on the error.

Cross plots of predicted and measured thermal

properties were generated to check the accuracy of

the ANNs developed. Figures 6 to 8 showed the com-

parison of the estimated and actual values of the train-

ing and test data sets, displayed on the same axes. The

accuracy of the predictions was assessed using the R
2

of the predictions. An ideal model would produce a

perfect positively diagonal relationship between the

estimated and actual data, with an R
2

of 1. All training

data showed good prediction (R
2
>0.8). The predic-
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Fig. 5 Crystallinity of AgFiller-PP composites at various rPP

levels

Table 1 ANN training design and results

Property examined # Neurons # Iterations Training R
2

Average error

Crystallization temperature/°C 5 113 0.99129 0.12270

Melting temperature/°C 6 75 0.86784 0.06852

Crystallinity/% 4 250 0.96548 0.86132

Fig. 6 ANN o – training and x – test results for the prediction

of melting temperature of AgFiller-PP composites



tions on test data showed acceptable to good accu-

racy. In addition, it is to be noted that the range of

variations in properties such as melting temperature

was very small (approximately 3°C). Therefore, the

ANN model was in fact able to provide a good predic-

tion (within 1°C).

In addition to thermal properties, other aspects

such as processibility and mechanical strength are

also important in the development of AgFiller-PP

composites. For many applications, such as in the

manufacture of automotive parts and consumer goods

by injection molding, the composite material requires

low viscosity for ease of processing, while desiring

high physical strength and stiffness. Figure 9 shows a

matrix of scatter plots which outlines the correlations

between the four main input variables (AgFiller type,

AgFiller level, vPP level and rPP level) and some im-

portant properties. This matrix allows relationships

containing strong correlations be identified, such as in

the case of vPP% and Tc. The importance of each

property can then be ranked, and the outputs can be

weighted according during the construction of ANN

models. As future work, the optimization of these

properties can be achieved by combining inverted

ANN models for each property. Finally, to predict ac-

ceptance and feasibility of the designed composites in

the marketplace, neural networks can be employed

again when combined with other modeling methods,

as demonstrated in the work of Lin et al. [19]. Other

methods, such as the SWOT (strength, weakness, op-

portunities and threat) analysis are also useful for

such work.

Conclusions

In this work, the thermal properties of AgFiller-PP

composites were studied using DSC. Crystallization

temperature (Tc), melting temperature (Tm) and

crystallinity (Xc) were evaluated. It was shown that Tc

and Xc increased when AgFillers were added to pure

PP, while little change was observed in Tm. The pres-

ence of rPP also caused Tc of the composites to in-

crease. The experimental results were randomly di-

vided into a ‘training’ and a ‘test’ data set, consisting

respectively of 75 and 25% of total data, and were

used to prepare ANN models of each thermal prop-

erty. Networks with 2 hidden layers and 4 to 6 neu-

rons per layer were constructed. These networks were

found to well represent both the training and test data,

yielding satisfactory correlation coefficients.
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